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Solvent diffusion outside macromolecular surfaces

Erik Lindahl and Olle Edholm
Theoretical Physics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

~Received 18 July 1997!

The effect of the inhomogeneous environment upon solvent molecules close to a macromolecular surface is
evaluated from a molecular-dynamics simulation of a protein, myoglobin, in water solution. The simulation is
analyzed in terms of a mean-field potential from the protein upon the water molecules and spatially varying
translational diffusion coefficients for solvent molecules in directions parallel and perpendicular to the protein
surface. The diffusion coefficients can be obtained from the slope of the average-square displacements vs time,
as well as from the integral of the velocity autocorrelation functions. It is shown that the former procedure
gives a lot of ambiguities due to the variation of the slope of the curve with time. The latter, however, after
analytic correction for the contribution from algebraic long-time tails, furnish a much more reliable alternative.
@S1063-651X~98!01401-9#

PACS number~s!: 82.20.Wt, 61.20.Ja
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I. INTRODUCTION

The mobility of water outside macromolecules such
proteins is difficult to assess through experimental metho
Nevertheless, there seems to be agreement about a red
mobility close to the protein. Polnaszek and Bryant@1# came
up with a factor 5–10, as did Kimmichet al. @2# with a
different method. Halle and Piculell@3# reported a factor of
about 100 in the radial and about 10 in the lateral direction
the protein surface. Computer simulations offer a sim
method to resolve such variations of the diffusion coeffici
D as a function of the distance to the surface. This has
ditionally been done by fitting the square displacement
solvent molecules to a linear expression in time@4–7#,

^„r ~ t !2r ~0!…2&56Dt, t→`. ~1.1!

These studies all end up with a reduced translational di
sion coefficient close to the protein, but one reduced b
factor 2–4 rather than 10–100. Ahlstro¨m et al. @8# deter-
mined the variation of the diffusion coefficient by fitting th
Green’s function of the diffusion equation in a spa
bounded on the inner side by a reflecting sphere, with res
similar to those of@4–7#.

Recently, it has been observed that the fitting by Eq.~1.1!
has its difficulties since there are systematic deviations fr
an expression of this type@9,10#. This was suggested to b
due to a fractal dimensionality of the protein surface. W
want to show that there are several simpler reasons wh
result like that in Eq.~1.1! is not valid. In addition, the ob-
served nonlinearity of a plot of the mean-square displa
ment ~MSD! against time makes it difficult to evaluate th
diffusion coefficient from Eq.~1.1!. We therefore propose
the use of an alternative method to define the diffusion
efficient from the velocity autocorrelation function~VAC!
using the Kubo formula@11#
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^v~ t !•v~0!&dt. ~1.2!
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This is formally equivalent to Eq.~1.1! and follows from
pure mathematics and the fact thatv is the time derivative of
r . For a homogeneous system in an infinite space, it is ju
matter of taste and maybe statistical accuracy which met
to chose. In a system with boundaries, spatial variation of
diffusion coefficient, or deterministic forces, however, this
not so.

First, Eq.~1.1! is obtained from the solution of the diffu
sion equation in an infinite space. The corresponding form
for the process outside a complicated~maybe fractal! surface
looks differently. In Sec. IV we show that the analytic sol
tion to the diffusion equation outside an infinite planar r
flecting surface gives MSDs deviating from Eq.~1.1! in a
way similar to the MSDs in our simulations and those
@9,10#.

Second, the diffusion equation~1.1! and the analytic so-
lution of the diffusion equation outside a planar surface
strictly valid only for very long times. This is usually not
problem in a homogeneous system since one may then ev
ate the diffusion coefficient from the slope of the squa
displacement against time at very long times. For a sys
with a surface, however, molecules once close to the sur
will after long times on the average be far away from t
surface. Going to long times will thus yield only the bu
diffusion coefficient and a MSD linear in time. One therefo
has to make a compromise between the necessity to go
times long enough to avoid nondiffusive short-time effe
and the desire to resolve spatial variations of the diffus
coefficient. Such a compromise can be found if there e
times

t!
D

u¹Du2
~1.3!

that are still large enough for the nondiffusive short-tim
effects to die out. For such times, Eq.~1.1! or the appropriate
alternative for diffusion outside some surface can be use

Third, even if the first two problems can be resolve
there might be nondiffusive effects also at long times sin
the macromolecule may induce a mean potential acting
the solvent molecules. Usually, one would expect this de
791 © 1998 The American Physical Society
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792 57ERIK LINDAHL AND OLLE EDHOLM
ministic force to be attractive. In an analysis using Eq.~1.1!
or an equivalent relation, such a mean attraction would sh
up as a slower diffusion close to the macromolecular surfa
One could then adopt a more general equation such as
Smoluchowski or Fokker-Planck equation@12# to simulta-
neously try to evaluate a spatially varying diffusion coef
cient and a spatially varying mean force. This, however
far from trivial.

To solve these problems, one needs to be careful w
defining the diffusion coefficient. We assume self-diffusi
in an infinite homogeneous space to be characterized b
MSD at long times proportional to time with the proportio
ality constant being six times the diffusion coefficient. Th
self-diffusion coefficient is a property of the fluid that ma
be defined locally also in a finite nonhomogeneous spa
although in this case it cannot be derived from the MSD
long times. It can, however, be obtained from local sho
time data through the Kubo formula~1.2! since this involves
much shorter time scales. The result then defines the s
the MSD would have at very long times in an infinite spa
for a fluid with the same global properties as ours has
cally.

Equation~1.2! is valid as long as the diffusion coefficien
and mean potential do not vary appreciably over distan
that a solvent molecule travels in the time it takes for
VAC to decay to zero. For Brownian motion, this happe
on a time scale of the inverse dampingb21. We get an upper
estimate of the distance by multiplying with the free flig
velocity A3kBT/m:

1

b
A3kBT

m
5

kBT

mb
A3m

kBT
5DA3m

kBT
. ~1.4!

For water, this evaluates to less than 0.01 nm.
We have here applied both Eqs.~1.1! and ~1.2! to an

analysis of a simulation of myoglobin in water solution.
addition to the diffusion coefficients, we have also found a
evaluated a mean potential by which the first shell of wa
molecules is bound to the protein surface with a bind
energy of 2–3 kJ/mol.

II. MOLECULAR-DYNAMICS SIMULATION

Myoglobin was simulated in a periodic box containin
5763 water molecules. As the initial structure we used
entry 1MBA @13# from the Brookhaven Protein Data Ban
For the simulations a standard molecular-dynamics prog
GROMOS @14# was used. All potential parameters were t
standard ones ofGROMOS and the water model was th
simple-point-charge~SPC! one@15#. United atoms were use
for the aliphatic hydrocarbons, while polar hydrogens w
represented explicitly. All bond lengths were kept fixed u
ing the algorithmSHAKE @16#. The step length for the inte
gration of the equations of motion was chosen to 0.002
and a cutoff at 1.0 nm was used. The system was initi
equilibrated for 200 ps. Pressure scaling was used du
part of the equilibration to obtain a volume of the syste
corresponding to the volume at atmospheric pressure. T
perature scaling@17# to a heat bath with temperature 300
using a time constant of 0.1 ps was used during the en
simulation. Production runs to obtain MSDs were typica
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200–400 ps, storing coordinates every 0.2 ps. To calcu
VACs shorter runs~20–40 ps! were used, but data wer
stored more often~typically every 0.01 ps! due to the fast
decay of the VAC.

III. RESULTS

A. The mean potential

A count of the average number of water molecules
different distances from the protein gives a result like tha
Fig. 1. The drop at big distances is due to the finite size
the periodic box, which also means every water molecule
a periodic copy of the protein within 3 nm. This result w
converted to a mean potentialUmean(r ) using the Boltzmann
distribution:

N~r !dr}A~r !e2Umean~r !/kBTdr ~3.1!

or

Umean~r !5C2kBTln@N~r !/A~r !#. ~3.2!

HereN(r )dr is the number of water molecules in a shell
thicknessdr at distancer from the protein andA(r )dr is the
volume of that shell in space. The volume was calculated
counting the number of points on a fine grid covering t
entire periodic box having different distances to the clos
protein atom. The constantC was chosen to give the mea
potential zero at long distances from the protein. In this w
the solid curve in Fig. 2 was generated. This shows a m
mum with a depth of about 2 kJ/mol at the distance 0.33 n
a weak local maximum at 0.45 nm, and a leveling off to t
constant value further out. There are about 700 water m
ecules inside this maximum. The protein surface area ca
calculated using, e.g., the method and program of Lee
Richards@18# and is then found to be 75 nm2. Since a water
molecule typically covers an area of about 0.1 nm2, this
means that essentially a whole first shell of water lies in
first minimum of the mean potential.

As a control, the mean potential was evaluated indep
dently by averaging the mean force perpendicular to the p
tein on the water molecules as a function of distance fr
the protein. The result was subsequently integrated to g

FIG. 1. Number of water molecules vs closest distance t
protein atom~relative scale!.
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57 793SOLVENT DIFFUSION OUTSIDE MACROMOLECULAR SURFACES
the dotted curve in Fig. 2. This curve is similar to the so
one obtained from Eq.~3.2!, but the minimum is deeper~3
kJ/mol! and positioned slightly further out from the prote
surface.

From this we conclude that the first layer of water m
ecules outside a protein surface will be bound to the pro
by a weak mean potential~a couple of kJ/mol!. Since the
protein is an atomic surface enabling weaker or stron
bonding at different places this will not be uniform; calcul
tions of the residence times for waters close to a protein@7#
show a variation of a factor 20. For a Boltzmann factor,
corresponding difference in energy would bekBTln20'7.5.
Thus the binding energy probably varies between zero
the order of 10 kJ/mol, with an average of 2–3 kJ/mol.

B. Diffusion coefficients from mean-square displacements

For each water molecule, we approximate the norma
the protein surface by the direction from the closest prot
atom to the water’s center of mass in each step. The cha
in distance along this direction was taken as the normal
placementDr' of the water molecule. The square displac
ment parallel to the surfaceDr i

2 follows from the total square
displacement andDr25Dr'

2 1Dr i
2 .

Waters were divided into five bins based on their aver
distance to the surface during the simulation. The bin lim
were 0.45, 0.9, 1.2, and 1.5 nm.

For each such bin, square displacements were aver
over both molecules and the time origin@ t50 in Eq. ~1.1!#.
The resulting MSDs are plotted vs time in Fig. 3 for bin
with an appearance similar to the other bins. The cur
show a free flight behavior~i.e., the molecules do not ‘‘feel’’
the presence of their neighbors! up to approximately 0.5 ps
For intermediate times~0.5–10 ps! the increase is less tha
linear for both curves, although for long times it seems
tend to linearity. Since the normal motion has one degre
freedom and the parallel two, thebulk MSD at large times
should be expected to increase as 2Dt and 4Dt, respectively.
However, this is not the case for the time period studied
our simulations. Fitting the MSDs to a power lawCta yields

FIG. 2. Mean potential vs distance from protein. The solid li
is from the Boltzmann distribution and the dotted line is from in
grated average forces.
in

r

e

d

o
n
ge
s-
-

e
s

ed

s

o
of

n

exponentsa in the range 0.85–0.96, i.e., a less-than-line
increase, as observed by@9,10#. We also calculated standar
deviations of the fits by dividing the data into ten subsets a
repeating the process on each of these. The standard d
tions of the results were then scaled to a sample 10 tim
larger.

The exponent being less than unity means that value
D obtained from a linear fit will depend on the lower boun
ary of the fitting region, as can be seen in Fig. 4, albeit w
large standard deviations. This is a severe problem with
MSD method since it leads to systematic errors in the va
of the diffusion coefficient, errors that will therefore no
show up in the standard deviations obtained from subse

The normal and parallel diffusion coefficients obtained
fits from 20 ps to 100 ps are plotted as functions of dista
to the protein surface in Fig. 5. For comparison, the valu
from the VAC can be found in the same figure.

C. Diffusion coefficients from velocity autocorrelation functions

The projection of a water molecule’s velocity on the pr
viously mentioned direction normal to the protein surface

-
FIG. 3. Mean square displacement vs time in a log-log plot. T

solid lines represent a linear increase with time.

FIG. 4. Diffusion coefficient from the mean-square displac
ment as a function of the time window used for the fit. The upp
boundary was 100 ps.
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794 57ERIK LINDAHL AND OLLE EDHOLM
taken as the normal velocity. The difference between
total velocity and this is used as the parallel velocity.

The autocorrelationr(t) for each of these vectors wa
calculated according to

r~ t !5^v~ t !•v~0!&, ~3.3!

where the average is over time origin (t50) and molecules.
The water molecules were placed into bins based on t
distance to the surface at the time origin, instead of th
average distance. This is a very good approximation sinc
molecule does not travel far before the VAC has decaye
zero and it helps us avoid averaging out small motio
which is a risk in the MSD case. Figure 6 shows the result
VAC for the normal velocity in bin 2. Since the motion is n
perfectly Brownian, the VAC will have an algebraic long
time tail, which we need to include in the integral. Th
causes a problem since the tail is of the same order as
noise after a few picosecond. We solve it by calculating t

FIG. 5. Diffusion coefficients perpendicular and parallel to t
surface calculated with the two methods vs distance from the
tein.

FIG. 6. Velocity autocorrelation function for the normal part
bin 2.
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contribution analytically. Following Alder and Wainwrigh
@19#, we assume a time dependenceCt23/2 and varyC to fit
the VAC in the range 0.5–3.0 ps; see Fig. 7. As abo
standard deviations were obtained by dividing the data i
subsets. It is by no means obvious where we should cut
numerical integration and use the analytical result to infin
but the sum of the two parts does not change by more th
few percent depending on where we do the cut, further j
tifying our choice of fitting function. In the results that fo
low, we have taken the average of cuts at 0.5–3.0 ps in s
of 0.5 ps. This gives another standard deviation, which
add quadratically to the earlier one. As an example, the
tegral of the tail from 3.0 ps would contribute about 15%
the result.

The resulting diffusion coefficients as functions of di
tance to the surface can be found in Fig. 5. The values fr
the VAC are in general lower and smoother than the co
sponding data from the MSD. Note that the MSD valu
would be lower if one had chosen a lower boundary lar
than 20 ps for the fits in Sec. III B. Both types show a cle
decrease close to the protein surface. The decrease is m
larger for the MSD data, and this does not show any diff
ence between normal and parallel diffusion, whereas
VAC data show a decrease in normalD almost twice the one
in parallel. The most probable reason for the decrease b
smaller with the VAC data is that this does not include t
effect from the mean potential. The diffusion coefficient f
bulk SPC water is 3.631029 m2/s @15#, which agrees rea-
sonably well with our values far off from the protein, but
slightly larger than the experimental value 2.331029 m2/s
@20#.

IV. THE PRESENCE OF A SURFACE

Our results above confirm the observations of Bizza
and Cannistraro@9# that water molecules close to a prote
surface do not follow the ordinary diffusive relation~1.1!
valid in an infinite space but rather an equation of the typ

^„r ~ t !2r ~0!…2&56Dta. ~4.1!

o-
FIG. 7. Algebraic tail fitted to an enlarged part of the veloc

autocorrelation function.
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57 795SOLVENT DIFFUSION OUTSIDE MACROMOLECULAR SURFACES
Reference@9# reports the exponenta having smaller values
close to the protein~down to values as low as 0.6!. This
behavior was observed for times up to 10 ps, correspond
to displacements up to 0.3 nm.

We will try to explain this behavior by introducing th
protein surface in the diffusion equation. The simplest mo
of the effect of a protein on surrounding solvent molecule
to treat the protein as a rigid reflecting boundary. Even w
the water molecules undergoing perfect diffusion, t
boundary condition will invalidate Eq.~1.1!. If the protein
surface is modeled as an infinite planar surface, the prob
can be solved analytically in terms of the Green’s funct
for the infinite problem and a mirror source. For diffusion
the two directions parallel to the surface the classical res

^@x~ t !2x~0!#2&5^@y~ t !2y~0!#2&52Dt ~4.2!

is regained, while one obtains

^@z~ t !2z~0!#2&52DtF12
2z~0!

ApDt
e2z~0!2/4Dt

1
z~0!2

Dt
erfc@z~0!/A4Dt#G ~4.3!

in the perpendicularz direction. Here the complementar
error function erfc is defined as

erfc~y!512
2

Ap
E

0

y

e2x2
dx. ~4.4!

The integral can be evaluated numerically or the funct
looked up in a table. Equation~4.3! is compared with the
normal MSD from bin 1 in Fig. 8. For the constants in E
~4.3! we have chosen values reasonable in bin
@D53.031029 m2/s, z(0)50.14 nm#, although the cor-
rect expression would be an average overz(0) values in the

FIG. 8. Mean-square displacement of the solvent molecule
bin 1 vs time from the simulation and from the analytical soluti
of the diffusion equation outside a planar reflecting surfa
D5331029 m2/s andz(0)50.14 nm are used.
g
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bin. This approximation at least in part accounts for t
simulation curve being more stretched out than the theor
cal one.

A time-varying exponenta(t) in ^@z(t)2z(0)#2&52Dta

may be estimated from the derivative of the logarithm of E
~4.3! with respect to lnt. Introducings54Dt/z(0)2 to save
space, the derivative becomes

a~s!511

2

Aps
e21/s2

4

s
erfc~1/As!

12
4

Aps
e21/s1

4

s
erfc~1/As!

. ~4.5!

Clearly we get the classical resulta51 in the limit of very
long or very short times. This and the corresponding lo
rithmic derivative of the data from bin 1 are plotted in Fig.
with the same constants as above. Further away from
surface,z(0) will be larger, and the kink will appear late
The physical reason for the variation of the exponent is
available space being smaller close to a protein due to
presence of the rigid wall. A solvent molecule in this regi
will therefore show a smaller MSD than a molecule far fro
the surface where the entire three-dimensional space is a
able. Thus, using Eq.~1.1! to evaluate the diffusion coeffi
cient, one will get the local diffusion coefficient for time
short enough for the solvent molecule not to feel the pr
ence of the surface. For intermediate times the MSD will
too small due to the surface and again for very long times
molecules once close to the surface will on the average
quite far away, so the MSD approaches the bulk value. Ap
from the free-flight region, we will thus get an exponent th
begins at 1 and decreases, then increases above 1, and fi
asymptotically approaches unity. At a curved surface,
exact solution above is no longer valid, but the qualitat
effect still exists for the same physical reasons. One wo
expect it to be smaller at a convex surface and larger a
concave one.

in

.

FIG. 9. Logarithmic derivatives of the curves in Fig. 8. This
approximately the exponenta.
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796 57ERIK LINDAHL AND OLLE EDHOLM
V. DISCUSSION

The two procedures to evaluate diffusion coefficien
from the slope of the MSD vs time and from the integral
the VAC, are formally equivalent. One formula can be d
rived from the other if the slope is taken at the limit
infinite time and the integral is taken up to infinite tim
Neither, however, is possible to do using data from a co
puter simulation of limited length. In practice, one finds th
in the latter case the integral can be cut at a fairly small fin
time, especially if we make an analytic correction for t
long-time algebraic tail. This makes it possible to reliab
evaluate diffusion coefficients in the presence of macrom
lecular surfaces, mean potentials, and a strongly spat
varying diffusion.

When the MSD is used, we find with the present variat
of the diffusion coefficients~Fig. 5! from Eq. ~1.3! that we
have to use timest!400 ps. Since the nondiffusive effec
at short times have died out after timest@1ps, there exists a
time window at 10–100 ps for which diffusion coefficien
should be possible to evaluate from the MSD. The prese
of the protein surface may be more of a problem as s
from Fig. 9. The exponenta in the relation 2Dta is smaller
than one for short times and is still slightly varying when w
approach 100 ps, which is in the entire suitable time windo
These problems are avoided by using the Kubo formula~1.2!
to calculate diffusion coefficients from the VAC instead.

The diffusion coefficients obtained from the VAC do n
show an as large reduction close to the surface as the
-
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-
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n
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calculated from MSD or NMR experiments. The VAC d
scribes very local events on time scales of picosecond, w
the MSD involves motions over hundreds of picosecond.
these times a mean potential will result in a decreased
bility and thus a lower diffusion coefficient close to the su
face. NMR data, finally, are typically obtained from correl
tion functions decaying over even larger time scales, s
10–100 ns. The potential can be expected to have the s
effect on NMR results and one must also keep in mind t
the interpretation of relaxation data in terms of diffusion c
efficients is far from trivial and relies upon modeling whe
the coefficients are fitted to yield either a correct frequen
or concentration dependence of the relaxation.

The reduction of mobility from the potential cannot eas
be distinguished from a reduced diffusion coefficient in
single NMR experiment. However, measurements as a fu
tion of temperature yield the same activation ener
(2065 kJ/mol) in bulk and at the surface@3#. This does
exclude a very high energy barrier, but not one of 2–3
mol as in our case. Taking the potential into account,
altogether get a reduction of water mobility close to the p
tein by a factor 5–10. This is consistent with@1,2#, but lower
than the factor 10–100 of@3#.
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